
A universal property of the Drinfeld double of a finite

dimensional Hopf algebra

Ansi Bai

Southern University of Science and Technology

crippledbai@163.com

January 26, 2024

Dedicated to the dead in the landslide accident of Zhenxiong, Yunnan Province on Janurary 22nd, 2024 in China.

Advances in Quanutm Algebra Ansi Bai A universal property of the Drinfeld double of a finite dimensional Hopf algebra 1 / 34



Universal properties are rudimentary in mathematics. A universal proprety characterizes some

object X via relations with all objects that have more or less the same flavour as X . For

example, the universal enveloping algebra of a Lie algebra g is the unique associative algebra

that classifies all Lie algebra homomorphisms from g to algebras.

On the other hand, Hopf algebras play a pivotal role in modern mathematics, partly due to

their connection with manifold topology, combinatorics and other fields, and are interesting

subjects in their own rights. They also have great impact on physics via conformal field theory,

topological orders etc.

In this talk, I will present a universal property of a well-knowned construction, the Drinfeld

double D(H) of a finite dimensional Hopf algebra H. The universal property is not surprising,

but seems to be missing in the literature.
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The universal property of D(H) are the same as, in certain sense, that satisfied by the center

of a k-algebra. Thus I will divide my talk into two parts:

(A) First, I focus on centers.

(B) Secondly, I formulate the result. Then instead of proving it, I show the “unsurprising-ness”

of the result, i.e., why one can expect such a result is true.

The work is to appear on arXiv.
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Centers



We fix a field k. Let A be a k-algebra. The center of A is defined to be the subalgebra

Z (A) := {z ∈ A | az = za,∀a ∈ A}.

It is observed, for e.g. by Lurie, that the center can be completely characterized by that

• Z (A) is a k-algebra, equipped with an algebra homomorphism ρ : Z (A)⊗k A→ A such

that ρ(1Z ⊗−) = id, where 1Z is the unit of Z (A);

• It is universal: given a k-algebra B together with an algebra homomorphism

λ : B ⊗k A→ A such that λ(1B ⊗−) = id, there exists uniquely an algebra

homomorphism λ : B → Z (A) such that λ = ρ ◦ (λ⊗ id), i.e., all actions on A factor

through Z (A)⊗ A→ A uniquely.
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B ⊗ A

λ

##

λ⊗idA

// Z (A)⊗ A
ρ
// A
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determined.
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λ : B ⊗k A→ A such that λ(1B ⊗−) = id, there exists uniquely an algebra

homomorphism λ : B → Z (A) such that λ = ρ ◦ (λ⊗ id), i.e., all actions on A factor

through Z (A)⊗ A→ A uniquely.

Check:

Define ρ : Z (A) ⊗k A → A, z ⊗ a 7→ z · a. Then ρ is an algebra homomorphism since
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homomorphism λ : B → Z (A) such that λ = ρ ◦ (λ⊗ id), i.e., all actions on A factor

through Z (A)⊗ A→ A uniquely.

Check (cont’d):

(Universal) Suppose λ : B ⊗k A → A is an algebra homomorphism, then λ : B →
Z (A) : b 7→ λ(b ⊗ 1A) is indeed well-defined as aλ(b ⊗ 1A) = λ(b ⊗ a) = λ(b ⊗ 1A)a for
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Check (cont’d):

(Universal cont’d) We also have (ρ◦(λ⊗ id))(b⊗a) = λ(b⊗1A)a = λ(b⊗1A)λ(1B⊗a) =
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Formalism

We can formalize the story in previous slides using the notion of a monoidal category :

k-algebras⇝ objects in a monoidal category C
k-algebra homomorphism⇝ morphisms in C

⊗k ⇝ the tensor product ⊗ in C
distingshed element 1Z ∈ Z (A) or 1B ∈ B ⇝ a morphism I → Z (A) or a morphism I → B in C,

where I is the tensor unit of C

Definition

A monoidal category is a category C with functors ⊗ : C × C → C and Î : {∗} → C, ∗ 7→ I

equipped coherently with natural isomorphisms

• (X ⊗ Y )⊗ Z
∼→ X ⊗ (Y ⊗ Z ) for all X ,Y ,Z ∈ C;

• X ⊗ I
∼→ X

∼→ I ⊗ X for all X ∈ C.
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Center: definition (Preparation)

Definition. Let (C,⊗, I ) be a monoidal category. An E0-algebra in C is a pair (B, uB : I → B)

where B ∈ C and uB ∈ Mor(C). An E0-algebra homomorphism (B, uB)→ (C , uC ) is a

morphism f : B → C ∈ Mor(C) such that the diagram at left commutes.

I
uB

��

uC

��

B
f

// C

I ⊗ A
uB⊗idA

zz

∼

""
B ⊗ A

λ
// A

The category of E0-algebras in C is denoted by E0(C).

Definition. Let (B, uB) be an E0-algebra in C and A ∈ C be an object. A left unital action of

(B, uB) on A is a morphism λ : B ⊗ A→ A such that the diagram at right commutes.

The set of left unital actions of B on A is denoted by LUAA(B).
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Center: definition

Definition. Let (C,⊗, I ) be a monoidal category and A ∈ C. The center of A is an E0-algebra

(Z (A) ∈ C, uZ : I → Z (A)) in C equipped with a left unital action ρZ : Z (A)⊗ A→ A on A,

such that:

• Given any E0-algebra (B, uB) and a left unital action λ : B ⊗ A→ A, there exists a unique

E0-algebra homomorphism λ : B → Z (A) such that λ = ρZ ◦ (λ⊗ id), i.e., the diagram

B ⊗ A

λ

##

λ⊗idA

// Z (A)⊗ A
ρZ
// A commutes.
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Definition. Let (C,⊗, I ) be a monoidal category and A ∈ C. The center of A is an E0-algebra

(Z (A) ∈ C, uZ : I → Z (A)) in C equipped with a left unital action ρZ : Z (A)⊗ A→ A on A,

such that:

• Given any E0-algebra (B, uB) and a left unital action λ : B ⊗ A→ A, there exists a unique

E0-algebra homomorphism λ : B → Z (A) such that λ = ρZ ◦ (λ⊗ id), i.e., the diagram

B ⊗ A

λ

##

λ⊗idA

// Z (A)⊗ A
ρZ
// A commutes.

Equivalently, one defines the center (Z (A), ρZ ) to be the unique left unital action such that for

all E0-algebras B, the pushforward

E0(C)(B,Z (A))→ LUAA(B), f 7→ ρZ ◦ (f ⊗ id)

is an isomorphism, where the uniqueness follows from Yoneda lemma in disguise.
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Center: definition (cont’d)

Definition. Let (C,⊗, I ) be a monoidal category and A ∈ C. The center of A is an E0-algebra

(Z (A) ∈ C, uZ : I → Z (A)) in C equipped with a left unital action ρZ : Z (A)⊗ A→ A on A,

such that:

• Given any E0-algebra (B, uB) and a left unital action λ : B ⊗ A→ A, there exists a unique

E0-algebra homomorphism λ : B → Z (A) such that λ = ρZ ◦ (λ⊗ id), i.e., the diagram

B ⊗ A

λ

##

λ⊗idA

// Z (A)⊗ A
ρZ
// A commutes.

Example. Let C = Alg(Veck). Then the center of A ∈ C recovers the usual center of A, equippd
with the map ρ : Z (A)⊗ A→ A, z ⊗ a 7→ za.
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Center: definition (cont’d)

Definition. Let (C,⊗, I ) be a monoidal category and A ∈ C. The center of A is an E0-algebra

(Z (A) ∈ C, uZ : I → Z (A)) in C equipped with a left unital action ρZ : Z (A)⊗ A→ A on A,

such that:

• Given any E0-algebra (B, uB) and a left unital action λ : B ⊗ A→ A, there exists a unique

E0-algebra homomorphism λ : B → Z (A) such that λ = ρZ ◦ (λ⊗ id), i.e., the diagram

B ⊗ A

λ

##

λ⊗idA

// Z (A)⊗ A
ρZ
// A commutes.

Example. Let C = Veck. Then the center of V ∈ C is the space End(V ) equipped with the

canonical evaluation map ev : End(V )⊗k V → V , f ⊗ v 7→ f (v).
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Center: definition (cont’d)

Definition. Let (C,⊗, I ) be a monoidal category and A ∈ C. The center of A is an E0-algebra

(Z (A) ∈ C, uZ : I → Z (A)) in C equipped with a left unital action ρZ : Z (A)⊗ A→ A on A,

such that:

• Given any E0-algebra (B, uB) and a left unital action λ : B ⊗ A→ A, there exists a unique

E0-algebra homomorphism λ : B → Z (A) such that λ = ρZ ◦ (λ⊗ id), i.e., the diagram

B ⊗ A

λ

##

λ⊗idA

// Z (A)⊗ A
ρZ
// A commutes.

Example. More generally, in a monoidal category C with internal homs, the center of x ∈ C is

given by the internal hom [x , x ]. For example, when C is a fusion category, there is Z (x) = x⊗xL.
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Center: definition (cont’d)

Definition. Let (C,⊗, I ) be a monoidal category and A ∈ C. The center of A is an E0-algebra

(Z (A) ∈ C, uZ : I → Z (A)) in C equipped with a left unital action ρZ : Z (A)⊗ A→ A on A,

such that:

• Given any E0-algebra (B, uB) and a left unital action λ : B ⊗ A→ A, there exists a unique

E0-algebra homomorphism λ : B → Z (A) such that λ = ρZ ◦ (λ⊗ id), i.e., the diagram

B ⊗ A

λ

##

λ⊗idA

// Z (A)⊗ A
ρZ
// A commutes.

Example. If the monoidal category is coCartesian, i.e., the monoidal structure is given by

coproduct, then Z (A) = A. In particular, the center of a commutative algebra is itself.
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Note that in a monoidal category, algebras along with their left modules can be defined,

directly generalizing their k-linear counterparts. Then the following observation is clear:

Proposition

(1) The center Z (A) is an algebra in C, and the action ρZ : Z (A)⊗ A→ A is a left module

action on A.

(2) The center is terminal in all such left module actions on A. That is, suppose B is an

algebra in C and λ : B ⊗ A→ A is a left module action on A, then the unique morphism

λ : B → Z (A) is an algebra homomorphism.

Proof.

(1). The multiplication mZ : Z (A)⊗ Z (A)→ Z (A) is induced from the left unital action

Z (A)⊗ Z (A)⊗ A
id⊗ρZ // Z (A)⊗ A

ρZ // A . The defining property of mZ reads

ρZ ◦ (mZ ◦ id) = ρZ ◦ (id⊗ρZ ), which precisely dicates that A is a left Z (A)-module.

(2). Similiarly as (1), using the universal property of Z (A).
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Informally speaking, the center Z (A) of A is the “universal algebra” acting on A, and in

particular Z (A) ∈ Alg(C).

Example. End(V ) ∈ Alg(Veck) for V ∈ Veck.

Example. Z (A) ∈ Alg(Alg(Veck)) for A ∈ Alg(Veck). By Eckman-Hilton argument, an

algebra in the monoidal category of algebras in Veck is precisely a commutative algebra.

So the universal property of center presents us with a fancy way of stating the simple fact that

the center of an algebra is a commutative algebra.
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We will be needing the 2-categorical analog of center in the case for the Hopf algebras. As we

shall see from next slide, the categorification is straightforward.

Although many of the audience is already familiar with 2-categories, and we will indeed assume

that familiary to certain extent, let us have a quick recap on (strict) 2-categories: In addition

to objects and 1-morphisms satisfying the same axioms of a 1-category, a 2-category has

2-morphisms between 1-morphisms. Like the case for 1-morphisms, 2-morphisms can

compose with 2-morphisms once their domains and the codomains match in a certain way.

For example, {categories, functors, natural transformations} is a 2-category, and

{points in a topological space, paths, homotopy classes of homotopies between paths} is a
2-category.

2-Functors and higher natural transformations are easy to define.

Advances in Quanutm Algebra Ansi Bai A universal property of the Drinfeld double of a finite dimensional Hopf algebra 11 / 34



We will be needing the 2-categorical analog of center in the case for the Hopf algebras. As we

shall see from next slide, the categorification is straightforward.

Although many of the audience is already familiar with 2-categories, and we will indeed assume

that familiary to certain extent, let us have a quick recap on (strict) 2-categories: In addition

to objects and 1-morphisms satisfying the same axioms of a 1-category, a 2-category has

2-morphisms between 1-morphisms. Like the case for 1-morphisms, 2-morphisms can

compose with 2-morphisms once their domains and the codomains match in a certain way.

For example, {categories, functors, natural transformations} is a 2-category, and

{points in a topological space, paths, homotopy classes of homotopies between paths} is a
2-category.

2-Functors and higher natural transformations are easy to define.

Advances in Quanutm Algebra Ansi Bai A universal property of the Drinfeld double of a finite dimensional Hopf algebra 11 / 34



We will be needing the 2-categorical analog of center in the case for the Hopf algebras. As we

shall see from next slide, the categorification is straightforward.

Although many of the audience is already familiar with 2-categories, and we will indeed assume

that familiary to certain extent, let us have a quick recap on (strict) 2-categories: In addition

to objects and 1-morphisms satisfying the same axioms of a 1-category, a 2-category has

2-morphisms between 1-morphisms. Like the case for 1-morphisms, 2-morphisms can

compose with 2-morphisms once their domains and the codomains match in a certain way.

For example, {categories, functors, natural transformations} is a 2-category, and

{points in a topological space, paths, homotopy classes of homotopies between paths} is a
2-category.

2-Functors and higher natural transformations are easy to define.

Advances in Quanutm Algebra Ansi Bai A universal property of the Drinfeld double of a finite dimensional Hopf algebra 11 / 34



We will be needing the 2-categorical analog of center in the case for the Hopf algebras. As we

shall see from next slide, the categorification is straightforward.

Although many of the audience is already familiar with 2-categories, and we will indeed assume

that familiary to certain extent, let us have a quick recap on (strict) 2-categories: In addition
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2-morphisms between 1-morphisms. Like the case for 1-morphisms, 2-morphisms can

compose with 2-morphisms once their domains and the codomains match in a certain way.
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2-Functors and higher natural transformations are easy to define.
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A monoidal 2-category is a 2-category C equipped with 2-functors ⊗ : C× C→ C and

Ĵ : {∗} → C, ∗ 7→ J equipped with the three adjoint 2-natural equivalences

• (X ⊗ Y )⊗ Z ≃ X ⊗ (Y ⊗ Z ) for all X ,Y ,Z ∈ C;

• X ⊗ J ∼→ X ≃ J ⊗ X for all X ∈ C,

and some additional coherence data.

Definition. An E0-algebra in a monoidal 2-category C is a pair (B, uB : J → B) where B ∈ C

and uB ∈ 1Mor(C). An E0-algebra homomorphism (B, uB)→ (C , uC ) is a pair (f , ϕ) where

f ∈ 1Mor(C) and ϕ is an invertible 2-morphism displayed in the diagram at the left.

J
uB

zz
ϕ ⇒ uC

$$
B

f
// C

J
uB

zz
ϕ ⇒ uC

$$
B f //

ε
⇒

g

<< C
=

J
uB

zz
ψ ⇒ uC

$$
B

g
// C

An E0-algebra 2-homomorphism (f , ϕ)⇒ (g , ψ) is a 2-morphism ε : f ⇒ g such that the

equation of pasting diagram at the right holds.
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We denote by E0(C) the 2-category of E0-algebras in C.

Definition. Let (B, uB) ∈ E0(C) and A ∈ C be an object. A left unital action of B on A is a

pair (f : B ⊗ A→ A, ξ) where f ∈ 1Mor(C), and ξ is an invertible 2-morphism witnessing the

“left unitality” of the morphism f (called left unitality structure), as displayed below.

J ⊗ A
ξ ⇒ ∼

$$

uB⊗id

xx

B ⊗ A
f

// A

J ⊗ A
ξ ⇒ ∼

$$

uB⊗id

xx

B ⊗ A f //

κ

⇒

g

:: A
=

J ⊗ A
η ⇒ ∼

$$

uB⊗id

xx

B ⊗ A
g

// A

A homomorphism of left unital actions (f , ξ)⇒ (g , η) is a 2-morphism κ : f ⇒ g such that

the equation of pasting diagrams in the diagram holds.

We denote by LUAA(B) the category of left unital actions.
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Definition.

The center Z (A) of A ∈ C is an E0-algebra in C together with a left unital action

(ρ : Z (A)⊗ A→ A, ξ) such that the pushforward functor

E0(C)(B,Z (A))→ LUAA(B)

by (ρ, ξ) is an equivalence for all B ∈ E0(C).

The action of the pushforward functor is illustrated as below:

J
uB

��

ϕ ⇒ uZ

!!

B f // Z (A)

7→

J ⊗ A

∼

$$

uB⊗id

xx

ϕ⊗id⇒ ξ ⇒

uZ⊗id
��

B ⊗ A f⊗id // Z (A)⊗ A
ρ
// A
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g
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$$
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B ⊗ A
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ρ
// A
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2-categorical center (cont’d)

The take-away: The center still carries an action ρ : Z (A)⊗ A→ A, this time being left unital

up to an extra data.

Examples (Without proof). (1) In the monoidal 2-category (Cat,×, {∗}) of categories,
functors and natural transformations, the center of a category A ∈ Cat is the category End(A)
of functors A → A equipped with the canonical evaluation functor ev : End(A)×A → A.
(2) In the 2-category MonCat = Alg(Cat) of monoidal categories, monoidal functors and

monoidal natural transformations, the center Z (A) of (A,⊗, I ) ∈ MonCat is called the

Drinfeld center, and is a monoidal category whose set of objects are

Z (A) := {(W ∈ A, γ−,W )},

where γ−,W is a half-braiding, i.e., a family {γX ,W : X ⊗W
∼→W ⊗ X}X∈A of isomorphisms

natural in X and satisfying certain coherence relations.
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Example: Drinfeld center

Examples. (2)(cont’d) The universal action reads

ρ : Z (A)×A → A, ((W , γ−,W ),A) 7→W ⊗ A.

It is a monoidal functor with the monoidal structure given by the half-braiding γ’s. Namely, we

use the half-braiding γA1,W2 to build the isomorphism

T : W1 ⊗ A1 ⊗W2 ⊗ A2
∼→W1 ⊗W2 ⊗ A1 ⊗ A2 for W1,W2 ∈ Z (A) and A1,A2 ∈ A. The

coherence conditions satisfied by the half-braiding precisely makes T a well-defined monoidal

structure. To completely check that ρ indeed satisfies the universal property is rather tedious

though straightforward; see also Example 5.3.1.18 in Lurie’s Higher Algebra.
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Example: Drinfeld center (cont’d)

I would like to give some examples of Drinfeld centers.

Examples of Drinfeld centers. (1) Suppose C is the monoidal category obtained from a

monoid (C , ·, 1C ) by adding trivial morphisms. Then the Drinfeld center of C is the center of

the monoid C (with trivial morphisms.)

(2) Let G be a finite group. Then the Drinfeld center Z (Rep(G )) of the representation

category of G is the category of G -graded G -representations in which the grading respects the

G -action in a certain way.

(3) Let H be a finite dimensional Hopf algebra. Then the Drinfeld center Z (LMod(H)) is the

representation category of the Drinfeld double D(H) of H.

Advances in Quanutm Algebra Ansi Bai A universal property of the Drinfeld double of a finite dimensional Hopf algebra 17 / 34



Remark. In a monoidal 2-category C, there is a notion of algebras (= pseudomonoid in the

sense of [Day and Street: 1997]), and it is easy to see that the center

Z (A) ∈ Alg(C).

This fact also manifests itself in the previous two examples:

(1) The case C = Cat. Note that algebras in Cat are precisely monoidal categoires, i.e., there

is Alg(Cat) = MonCat; and indeed we have End(A) ∈ Alg(Cat) = MonCat for A ∈ C.

(2) The case C = MonCat. Note that [Joyal and Street: 1993] has shown that there is a

canonical 2-equivalence Alg(Alg(Cat)) = BrMonCat of 2-categories, where BrMonCat is

the 2-category of braided monoidal categories. Hence the Drinfeld double Z (A) has a
canonical structure of a braided monoidal category for A ∈ MonCat.
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Short summary

We have seen:

• Center of an object in a monoidal category. For e.g., center of a k-algebra, center of a

vector space.

• Center of an object in a monoidal 2-category. For e.g., center of a monoidal category.
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The universal property of

Drinfeld double



My aim is to state the result and show why we can expect such a result is true. The rest of my

talk is mostly devoted to make the necessary prepration, which is also the key ( and the only)

ingredient of the proof: Tannak-Krein duality.

• Preparation: Tannaka-Krein duality and quasi-bialgebras.

• Stating the main result and show how it can be expected.
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Tannaka-Krein duality

Tannaka-Krein duality deals with the relation between algebras and its category of left

modules/representations. From now on we assume finite dimensionality for both algebras and

their modules.
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Tannaka-Krein duality

Tannaka-Krein duality deals with the relation between algebras and its category of left

modules/representations. From now on we assume finite dimensionality for both algebras and

their modules.

A : algebra
TK7−→ LMod(A) : category of left A-modules
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Tannaka-Krein duality

Tannaka-Krein duality deals with the relation between algebras and its category of left

modules/representations. From now on we assume finite dimensionality for both algebras and

their modules.

A
ϕ
// B : algebra homomorphism

TK7−→ LMod(A) LMod(B)
ϕ∗
oo : functor
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Tannaka-Krein duality

Tannaka-Krein duality deals with the relation between algebras and its category of left

modules/representations. From now on we assume finite dimensionality for both algebras and

their modules.

A b

⇒

ϕ

""

ψ

??B : “intertwinner”
TK7−→ LMod(A) b∗

⇒

LMod(B)

ψ∗

ii

ϕ∗

uu

: natural transformation

Here an “intertwinner” b : ϕ ⇒ ψ between algebra homomorphisms is an element b ∈ B such

that bϕ(a) = ψ(a)b for all a ∈ A. Then the component of the natural transformation b∗ reads

b.− : ϕ∗(BV )→ ψ∗(BV ) for BV ∈ LMod(B).

Advances in Quanutm Algebra Ansi Bai A universal property of the Drinfeld double of a finite dimensional Hopf algebra 21 / 34



Tannaka-Krein duality

Tannaka-Krein duality deals with the relation between algebras and its category of left

modules/representations. From now on we assume finite dimensionality for both algebras and

their modules.

A b

⇒

ϕ

""

ψ

??B : “intertwinner”
TK7−→ LMod(A) b∗

⇒

LMod(B)
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ii

ϕ∗

uu

: natural transformation

Here an “intertwinner” b : ϕ ⇒ ψ between algebra homomorphisms is an element b ∈ B such

that bϕ(a) = ψ(a)b for all a ∈ A. Then the component of the natural transformation b∗ reads

b.− : ϕ∗(BV )→ ψ∗(BV ) for BV ∈ LMod(B).

Remark. Note that on this last level the action of TK is fully-faithful, in the sense that all

natural transformations α : ϕ∗ ⇒ ψ∗ arise in this way for a unique b ∈ B.
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: natural transformation

Here an “intertwinner” b : ϕ ⇒ ψ between algebra homomorphisms is an element b ∈ B such

that bϕ(a) = ψ(a)b for all a ∈ A. Then the component of the natural transformation b∗ reads

b.− : ϕ∗(BV )→ ψ∗(BV ) for BV ∈ LMod(B).

Remark (cont’d). However, on the 1-morphisms’ level, the action of TK is far from surjective.
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Exercise for TK-duality: Equip LMod(H) with a monoidal structure!

Exercise! Suppose H is an algebra. How to equip LMod(H) with a monoidal structure

assuming you know TK duality?

Algebra homomorphism H ⊗k H ← H :∆ 7−→

Functor ⊗ : LMod(H)×LMod(H)→LMod(H⊗kH)→LMod(H)

Algebra homomorphism k← H :ε 7−→ Functor Î : {∗} → LMod(k)→ LMod(H)

Invertible intertwinner 7−→ Natural isomorphism

H⊗kH⊗kH

a ⇒

oo
∆⊗id

OO

id⊗∆

H⊗kHOO

∆

H⊗kH
oo

∆
H

LMod(H)×LMod(H)×LMod(H)

α ⇒id×⊗
��

⊗×id
// LMod(H)×LMod(H)

⊗
��

LMod(H)×LMod(H)
⊗

// LMod(H)
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Exercise for TK-duality: Equip LMod(H) with a monoidal structure!

Exercise! Suppose H is an algebra. How to equip LMod(H) with a monoidal structure

assuming you know TK duality?

Algebra homomorphism H ⊗k H ← H :∆ 7−→ Functor ⊗ : LMod(H)×LMod(H)→LMod(H⊗kH)→LMod(H)

Algebra homomorphism k← H :ε 7−→ Functor Î : {∗} → LMod(k)→ LMod(H)

Invertible intertwinner 7−→ Natural isomorphism

H⊗kH⊗kH

a ⇒

oo
∆⊗id

OO

id⊗∆

H⊗kHOO

∆

H⊗kH
oo

∆
H

LMod(H)×LMod(H)×LMod(H)

α ⇒id×⊗
��

⊗×id
// LMod(H)×LMod(H)

⊗
��

LMod(H)×LMod(H)
⊗

// LMod(H)
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Hopf algebras

Summarising the structures we get on H, we have:

Definition. A quasi-bialgebra is an algebra H equipped with algebra homomorphisms

∆: H → H ⊗ H, ε : H → k, and an invertible interwinner a ∈ H ⊗ H ⊗ H in the sense that

a · (∆⊗ id)∆(h) = (id⊗∆)∆(h) · a,∀h ∈ H,

subject to conditions

(ε⊗ id)∆ = id = (id⊗ε)∆: H → H

(id⊗ id⊗∆)(a) · (∆⊗ id⊗ id)(a) = (1H ⊗ a) · (id⊗∆⊗ id)(a) · (a⊗ 1H)

(id⊗ε⊗ id)(a) = 1H ⊗ 1H .

Proposition. If H is a quasi-bialgebra, then LMod(H) is a monoidal category.

Definition. A bialgebra is a quasi-bialgebra H with a = 1H ⊗ 1H ⊗ 1H . In particular, in a

bialgebra, (H,∆, ε) always form a coassociative coalgebra. A Hopf algebra is a bialgebra

satisfying the property of admitting an “antipode”.
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Let H,K be quasi-bialgebras.

Algebra homomorphism H ← K 7−→

Functor F : LMod(H)→ LMod(K )

Interwinners 7−→ A monoidal structure on F :

H⊗kH

t2⇒

H
∆Hoo

K⊗kK

f⊗f

OO

K

f

OO

∆Koo

LMod(H)×LMod(H)

T2⇒F×F

��

// LMod(H)

F

��
LMod(K)×LMod(K) // LMod(K)

and k

t0⇒

H
εHoo

K

εK

__

f

OO and {∗}

T0⇒

//

##

LMod(H)

F

��
LMod(K)

satisfying certain conditions.
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Definition. Let H,K be quasi-bialgebras. A quasi-bialgebra homomorphism K → H is an

algebra homomorphism f : K → H equipped with invertible intertwinners t2 ∈ H ⊗k H and

t0 ∈ k in the sense that

t2 · (f ⊗ f )∆K (k) = ∆H(f (k)) · t2,∀k ∈ K

t0 · εK (k) = εH(f (k)) · t0,∀k ∈ K ,

subject to conditions

aH · (∆H ⊗ id)(t2) · (t2 ⊗ 1H) = (id⊗∆H)(t2) · (1H ⊗ t2) · f ⊗3(aK )

t0(εH ⊗ id)(t2) = 1H = t0(id⊗εH)(t2).
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t0(εH ⊗ id)(t2) = 1H = t0(id⊗εH)(t2).

Remark. If we take f to be an isomorphism (or WLOG, the identity map), then a quasi-bialgebra

homomorphism (f , t2, 1) recovers the notion of twisting by t2.
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Definition. Let H,K be quasi-bialgebras. A quasi-bialgebra homomorphism K → H is an
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t0(εH ⊗ id)(t2) = 1H = t0(id⊗εH)(t2).

Definition. Let (f , t2, t0), (g , s2, s0) : K → H be quasi-bialgebra homomorphisms. A quasi-

bialgebra 2-homomorphism (f , t)⇒ (g , s) is an intertwinner η : f ⇒ g ∈ H such that

∆H(η) · t2 = s2 · (η ⊗ η), εH(η)t0 = s0.
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Then we have:

quasi-bialgebra homomorphisms
TK7−→ monoidal functors

quasi-bialgebra 2-homomorphisms
TK7−→ monoidal natural transformations.

Fact (McCrudden)

Quasi-bialgebras, quasi-bialgebra homomorphisms, quasi-bialgebra 2-homomorphisms form a

2-category; it is a monoidal 2-category under (⊗k,k).
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Remark. A more systematic way of understanding QB is as follows [Day, McCrudden, Street]:

we have a symmetric monoidal 2-category Alg1−op
k

of k-algebras, reverse algebra

homomorphisms and intertwinners. Then we have QB1−op = Alg(Alg
k
), i.e., the 2-category of

quasi-bialgebras are the 2-category of algebras in Alg1−op
k

. Now the symmetric (lax) monoidal

2-functor

TK : Alg1−op
k

→ Cat

preserve algebras, thus the LMod(B) ∈ Alg(Cat) = MonCat, i.e., is a monoidal category.

Quasi-triangular quasi-bialgebras/triangular quasi-bialgebras could be understood in a similiar

way, as they are precisely braided algebras/symmetric algebras in Alg1−op
k

, and are preserved

by symmetric monoidal 2-funcotrs. Since we do not talk much about quasi-triangular and

triangular quasi-bialgebras, we did not emphasize this viewpoint.
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Main Theorem (Preparation)

Now we introduce our main theorem, beginning with the Drinfeld double. Let H be a finite

dimensional Hopf algebra.

• Its antipode S : H → H is an anti-isomorphism and also a coalgebra-isomorphism

satisfying certain relations.

• Note that the dual space H∗ := Homk(H,k) has a natural Hopf algebra structure; we use

(Hop) to refer to the same Hopf algebra H with multiplication reversed.

The Drinfeld double D(H) ([Drinfeld: 1987]) of H is the bialgebra whose underlying coalgebra

is

(Hop)∗ ⊗k H,

and whose multiplication is given by

(f ⊗ a) · (g ⊗ b) := f · g(S
−1

(a(3))− a(1))⊗ a(2)b.
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Fact [Drinfeld, Majid, Kassel]

D(H) is a Hopf algebra, and there is a canonical equivalence

J : LMod(D(H)) ∼= Z (LMod(H)).

Sketch proof.

Let D(H)V be a left D(H)-module. Then the underlying object of J(V ) is

H↪→Hop∗⊗HV ∈ LMod(H), while the half-braiding is given by

γW ,V : W ⊗ V → V ⊗W ,w ⊗ v 7→ e i .v ⊗ ei .w ,

for W ∈ LMod(H), where {ei}i is a basis of H and e i its dual.

Conversely, let (V , γ−,V = {γU,V : U ⊗ V
∼→ V ⊗ U}) ∈ Z (LMod(H)). Then we define

J−1((V , γ)) to be the vector space V equipped with a D(H)-action

(ω ⊗ a).v := (id⊗ω)(γH,V (1H ⊗ a.v)) for v ∈ V , ω ⊗ a ∈ D(H).
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Main theorem

Main Theorem (B.-)

The Drinfeld double D(H) is the center of H in QB1−op.

Main Theorem (B.-; in details, first part)

The left unital action H → D(H)⊗ H is given by the quasi-bialgebra homomorphism

(ρ : H → D(H)⊗k H, t2, t0) equipped with trivial left unitality structure, where

ρ : h 7→ 1̂⊗ h(1) ⊗ h(2),

t2 =
∑
i

1̂⊗ 1H ⊗ ei ⊗ e i ⊗ 1H ⊗ 1H , t0 = 1.

Here 1̂ is the unit of H∗, and {ei}i is a basis of H with {e i}i being its dual basis.
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Note that like analogous to the fact that the E0-structure (monoidal functors from {∗}) on a

monoidal category is essentailly unique, i.e., E0(MonCat) ≃ MonCat, we have

E0(QB1−op) ≃ QB1−op

Main Theorem (B.-; in details, second part)

The action (ρ : H → D(H)⊗ H, t2, t0, id) is the center of H in QB1−op. That is, the

pushforward

QB1−op(B,D(H)) ≡ E0(QB1−op)(B,D(H))→ LUAH(B)

k@@
εB

b ⇒

aa
εD(H)

B oo f D(H)

7→

k⊗ H
ee

∼
88

εB⊗id
b⊗id⇒ id=

OO

εD(H)⊗id

B ⊗ H oo f⊗id D(H)⊗ H oo
ρ

H

is an equivalence of categories for all quasi-bialgebras B.
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Recall that Alg1−op
k

is the 2-category of k-algebars, reverse algebra homomorphisms and

intertwinners, and QB1−op ≡ Alg(Alg1−op
k

).

Corollary

The Drinfeld double D(H) ∈ Alg(QB1−op) ≡ Alg(Alg(Alg1−op
k

)).

It is known that the Drinfeld double is a quasi-triangular Hopf algebra, which is hence in

particular a braided algebra in Alg1−op
k

.

Conjecture (Categorified Eckman-Hilton argument; Folklore)

Let C be a symmetric monoidal 2-category. Then there is a canonical equivalence of

2-categories

ι : Alg(Alg(C)) ≃ BrAlg(C).

Conjecture (B.-)

The quasi-triangular structure on D(H) coincides with that on ι(D(H)).
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Future works and questions.

• Verify the conjecture.

• The Meuger center of a braided monoidal category is a symmetric monoidal category.

When the braided monoidal category arises from a quasi-triangular Hopf algebra Q, one

can reconstrut a triangular Hopf algebra F (Q) giving rise to the Meuger center. Can one

reconstruct F (Q) explicitly? Is it the center of Q?

• Universal property of the Drinfeld double of infinite dimensional Hopf algebras/compact

quanutm groups.
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Thank you for your attention! Questions and comments are welcome.
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